Sunday, March 9, 2008

Protein Synthesis

The cell's ability to synthesize protein is, in essence, the expression of its genetic makeup. Protein synthesis is a sequence of chemical reactions that occur in four distinct stages, i.e., activation of the amino acids that ultimately will be joined together by peptide bonds; initiation of the polypeptide chain at a cell organelle known as the ribosome; elongation of the polypeptide by stepwise addition of single amino acids to the chain; and termination of amino-acid additions and release of the completed protein from the ribosome. The information for the synthesis of specific amino-acid sequences is carried by a nucleic acid molecule called messenger RNA (see nucleic acid). Proteins are needed in the diet mainly for their amino acids, which the body uses to build new proteins (see nutrition).
The mechanism of action of many widely used antibiotics, such as streptomycin, chloramphenicol, and tetracycline, can be understood in terms of their ability to interfere with some stage of protein synthesis in bacteria.

Protein Structure

Every protein molecule has a characteristic three-dimensional shape, or conformation. Fibrous proteins, such as collagen and keratin, consist of polypeptide chains arranged in roughly parallel fashion along a single linear axis, thus forming tough, usually water-insoluble, fibers or sheets. Globular proteins, e.g., many of the known enzymes, show a tightly folded structural geometry approximating the shape of an ellipsoid or sphere.
Because the physiological activity of most proteins is closely linked to their three-dimensional architecture, specific terms are used to refer to different aspects of protein structure. The term primary structure denotes the precise linear sequence of amino acids that constitutes the polypeptide chain of the protein molecule. Automated techniques for amino-acid sequencing have made possible the determination of the primary structure of hundreds of proteins.
The physical interaction of sequential amino-acid subunits results in a so-called secondary structure, which often can either be a twisting of the polypeptide chain approximating a linear helix (α-configuration), or a zigzag pattern (β-configuration). Most globular proteins also undergo extensive folding of the chain into a complex three-dimensional geometry designated as tertiary structure. Many globular protein molecules are easily crystallized and have been examined by X-ray diffraction, a technique that allows the visualization of the precise three-dimensional positioning of atoms in relation to each other in a crystal.
The tertiary structure of several protein molecules has been determined from X-ray diffraction analysis. Two or more polypeptide chains that behave in many ways as a single structural and functional entity are said to exhibit quaternary structure. The separate chains are not linked through covalent chemical bonds but by weak forces of association.
The precise three-dimensional structure of a protein molecule is referred to as its native state and appears, in almost all cases, to be required for proper biological function (especially for the enzymes). If the tertiary or quaternary structure of a protein is altered, e.g., by such physical factors as extremes of temperature, changes in pH, or variations in salt concentration, the protein is said to be denatured; it usually exhibits reduction or loss of biological activity.

Types of Proteins

A protein molecule that consists of but a single polypeptide chain is said to be monomeric; proteins made up of more than one polypeptide chain, as many of the large ones are, are called oligomeric. Based upon chemical composition, proteins are divided into two major classes: simple proteins, which are composed of only amino acids, and conjugated proteins, which are composed of amino acids and additional organic and inorganic groupings, certain of which are called prosthetic groups. Conjugated proteins include glycoproteins, which contain carbohydrates; lipoproteins, which contain lipids; and nucleoproteins, which contain nucleic acids.
Classified by biological function, proteins include the enzymes, which are responsible for catalyzing the thousands of chemical reactions of the living cell; keratin, elastin, and collagen, which are important types of structural, or support, proteins; hemoglobin and other gas transport proteins; ovalbumin, casein, and other nutrient molecules; antibodies, which are molecules of the immune system (see immunity); protein hormones, which regulate metabolism; and proteins that perform mechanical work, such as actin and myosin, the contractile muscle proteins.

Enzymes

One particularly important type of protein is an enzyme, discussed in the essay on that topic. Enzymes make possible a host of bodily processes, in part by serving as catalysts, or substances that speed up a chemical reaction without actually participating in, or being consumed by, that reaction. Enzymes enable complex, life-sustaining reactions in the human body—reactions that would be too slow at ordinary body temperatures—and they manage to do so without forcing the body to undergo harmful increases in temperature. They also are involved in fermentation, a process with applications in areas ranging from baking bread to reducing the toxic content of wastewater. (For much more on these subjects, see Enzymes.)
Inside the body, enzymes and other proteins have roles in digesting foods and turning the nutrients in them—including proteins—into energy. They also move molecules around within our cells to serve an array of needs and allow healthful substances, such as oxygen, to pass through cell membranes while keeping harmful ones out. Proteins in the chemical known as chlorophyll facilitate an exceptionally important natural process, photosynthesis, discussed briefly in Carbohydrates